Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Journal of Zhejiang University. Science. B ; (12): 64-77, 2023.
Article in English | WPRIM | ID: wpr-971469

ABSTRACT

Endoplasmic reticulum (ER) stress, as an emerging hallmark feature of cancer, has a considerable impact on cell proliferation, metastasis, invasion, and chemotherapy resistance. Ovarian cancer (OvCa) is one of the leading causes of cancer-related mortality across the world due to the late stage of disease at diagnosis. Studies have explored the influence of ER stress on OvCa in recent years, while the predictive role of ER stress-related genes in OvCa prognosis remains unexplored. Here, we enrolled 552 cases of ER stress-related genes involved in OvCa from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts for the screening of prognosis-related genes. The least absolute shrinkage and selection operator (LASSO) regression was applied to establish an ER stress-related risk signature based on the TCGA cohort. A seven-gene signature revealed a favorable predictive efficacy for the TCGA, International Cancer Genome Consortium (ICGC), and another GEO cohort (P<0.001, P<0.001, and P=0.04, respectively). Moreover, functional annotation indicated that this signature was enriched in cellular response and senescence, cytokines interaction, as well as multiple immune-associated terms. The immune infiltration profiles further delineated an immunologic unresponsive status in the high-risk group. In conclusion, ER stress-related genes are vital factors predicting the prognosis of OvCa, and possess great application potential in the clinic.


Subject(s)
Humans , Female , Ovarian Neoplasms/genetics , Cell Proliferation , Cytokines , Endoplasmic Reticulum Stress/genetics
2.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 931-942, 2023.
Article in Chinese | WPRIM | ID: wpr-998984

ABSTRACT

ObjectiveTo investigate whether phosphodiesterase (PDE) 5 inhibitors sildenafil (SIL) or LW1646 prevented renal interstitial fibrosis induced by unilateral ureteral obstruction (UUO). MethodsMale C57BL/6 mice were randomly divided into four groups (n =6), namely the Sham group, 7UUO group, 7UUO+SIL group and 7UUO+LW1646 group. Sildenafil (SIL) or LW1646, or vehicle was administered 1 hour before surgery, and the mice were continuously treated once daily (i. g., 50 mg/kg) for 7 days. The obstructed kidneys were harvested on day 7. Hematoxylin-eosin (HE) and Masson’s staining was used to examine renal histology. Immunoblotting and RT-qPCR were used to detect the expression levels of protein and mRNA for fibrosis, apoptosis, endoplasmic reticulum (ER) stress, autophagy, and pro-fibrotic factors. Human proximal tubule epithelial cells (HK-2) were treated with TGF-β1 for 48 hours or tunicamycin for 24 hours, respectively, to evaluate whether cyclic guanosine monophosphate (cGMP) or PDE5 inhibitors prevents ER stress and pro-fibrotic responses. ResultsAt the 7th days after UUO, the body weight of the mice showed a significant decrease (P< 0.000 1) compared with that in the sham group. The obstructed kidneys showed a significant tubular dilation and interstitial inflammation. The levels of protein and mRNA expression in apoptosis, ER stress, autophagy-related protein and pro-fibrotic factors were also markedly increased in UUO mice (P <0.05). In contrast, SIL or LW1646 treatment was associated with attenuated tubular dilation, infiltration of inflammatory cells and collagen content in the obstructed kidney of the mice. The protein and mRNA expression levels of renal TGF-β1 were markedly decreased, and the protein expression levels of apoptosis, endoplasmic reticulum stress, and autophagy markers were also significantly downregulated by PDE5 inhibitors. In HK-2 cells, TGF-β1 induced increased expression levels of fibronectin and BiP, which was at least partially reversed by cGMP, a product of PDE inhibition. Additionally, PDE5 inhibitors were found to modulate aberrant levels of autophagy and apoptosis. ConclusionIn conclusion, PDE5 inhibitors, in particular, LW1646, can alleviate the progression of fibrosis by improving ER stress, apoptosis and autophagy as well as downregulating protein and mRNA expression of TGF-β1.

3.
Article | IMSEAR | ID: sea-217157

ABSTRACT

Aim: In the present study, we exploited DNA microarray-based transcriptome analysis and showed overall changes in gene expression in vivo of amoebic trophozoites that interact with animal soluble factors using an intraperitoneal dialysis bag model to elucidate putative molecular pathways and genes involved in this interaction. Study Design: We exploited DNA microarray-based transcriptome analysis. Results: An analysis from a network including the interactions of up-regulated genes and their neighbors revealed the presence of 11 functionally related modules. Six of the modules obtained were related to endoplasmic reticulum (ER) functions, such as degradation, stress, proteasome-ubiquitination, phosphorylation, lipid metabolism, and protein sorting. Furthermore, major transcriptional changes displayed by the parasite at the beginning of interaction were attributed to the response to the host defense. These data are consistent with the notion that the concerted expression of genes necessary for survival such as increment in protein synthesis, cytoskeleton rearrangement, vesicular traffic and genes involved in cell death including calcium imbalance and the ER signals associated with protein degradation (ERAD) is an overall landscape during the in vivo interaction between the amoebic trophozoites and animal soluble factors, and suggest that the ER stress is one of the main pathways leading to programmed cell death in E. histolytica. Conclusion: The present findings on the global transcriptional changes displayed by the parasite at the early stages of interaction with host environments in peritoneal implantation indicate that a substantial proportion of concerted changes in gene expression in amoebic trophozoites are attributable to the parasite’s response for cell death signals due to ER stress. A detailed knowledge of the underlying molecular mechanism might suggest the efficient elimination of this parasite by promoting their death pathways.

4.
Journal of the ASEAN Federation of Endocrine Societies ; : 69-74, 2022.
Article in English | WPRIM | ID: wpr-962055

ABSTRACT

@#Akkermansia muciniphila is a promising gut microbiota for the treatment of type 2 diabetes mellitus (T2DM). A. muciniphilastimulates intestinal wall integrity, is an anti-inflammatory agent, and reduces endoplasmic reticulum stress, lipogenesis and gluconeogenesis. These properties make A. muciniphila a potential treatment option for T2DM by reducing insulin resistance and increasing insulin sensitivity and glucose tolerance in different tissues. This article explores the possible role of A. muciniphila in T2DM management, along with the various methods known to modulate A. muciniphila.


Subject(s)
Gastrointestinal Microbiome , Insulin Resistance , Probiotics , Diabetes Mellitus, Type 2
5.
Acta Pharmaceutica Sinica B ; (6): 210-227, 2022.
Article in English | WPRIM | ID: wpr-929289

ABSTRACT

Pancreatic adenocarcinoma (PAAD) is one of the most lethal malignancies. Although gemcitabine (GEM) is a standard treatment for PAAD, resistance limits its application and therapy. Secoemestrin C (Sec C) is a natural compound from the endophytic fungus Emericella, and its anticancer activity has not been investigated since it was isolated. Our research is the first to indicate that Sec C is a broad-spectrum anticancer agent and could exhibit potently similar anticancer activity both in GEM-resistant and GEM-sensitive PAAD cells. Interestingly, Sec C exerted a rapid growth-inhibiting effect (80% death at 6 h), which might be beneficial for patients who need rapid tumor shrinkage before surgery. Liquid chromatography/mass spectrometry and N-acetyl-l-cysteine (NAC) reverse assays show that Sec C sulfates cysteines to disrupt disulfide-bonds formation in endoplasmic reticulum (ER) proteins to cause protein misfolding, leading to ER stress and disorder of lipid biosynthesis. Microarray data and subsequent assays show that ER stress-mediated ER-associated degradation (ERAD) ubiquitinates and downregulates YAP to enhance ER stress via destruction complex (YAP-Axin-GSK-βTrCP), which also elucidates a unique degrading style for YAP. Potent anticancer activity in GEM-resistant cells and low toxicity make Sec C a promising anti-PAAD candidate.

6.
Biol. Res ; 54: 27-27, 2021. ilus, graf
Article in English | LILACS | ID: biblio-1505815

ABSTRACT

BACKGROUND: Demethylzeylasteral (T-96) is a pharmacologically active triterpenoid monomer extracted from Tripterygium wilfordii Hook F (TWHF) that has been reported to exhibit anti-neoplastic effects against several types of cancer cells. However, the potential anti-tumour effects of T-96 against human Prostate cancer (CaP) cells and the possible underlying mechanisms have not been well studied. RESULTS: In the current study, T-96 exerted significant cytotoxicity to CaP cells in vitro and induced cell cycle arrest at S-phase in a dose-dependent manner. Mechanistically, T-96 promoted the initiation of autophagy but inhibited autophagic flux by inducing ROS-mediated endoplasmic reticulum (ER) stress which subsequently activated the extrinsic apoptosis pathway in CaP cells. These findings implied that T-96-induced ER stress activated the caspase-dependent apoptosis pathway to inhibit proliferation of CaP cells. Moreover, we observed that T-96 enhances the sensitivity of CaP cells to the chemotherapeutic drug, cisplatin. CONCLUSIONS: Taken together, our data demonstrated that T-96 is a novel modulator of ER stress and autophagy, and has potential therapeutic applications against CaP in the clinic.


Subject(s)
Humans , Male , Prostatic Neoplasms/drug therapy , Autophagy , Triterpenes , Reactive Oxygen Species , Apoptosis , Cell Line, Tumor
7.
Acta Pharmaceutica Sinica B ; (6): 3567-3584, 2021.
Article in English | WPRIM | ID: wpr-922425

ABSTRACT

Protein neddylation is catalyzed by a three-enzyme cascade, namely an E1 NEDD8-activating enzyme (NAE), one of two E2 NEDD8 conjugation enzymes and one of several E3 NEDD8 ligases. The physiological substrates of neddylation are the family members of cullin, the scaffold component of cullin RING ligases (CRLs). Currently, a potent E1 inhibitor, MLN4924, also known as pevonedistat, is in several clinical trials for anti-cancer therapy. Here we report the discovery, through virtual screening and structural modifications, of a small molecule compound HA-1141 that directly binds to NAE in both

8.
Asian Pacific Journal of Tropical Biomedicine ; (12): 379-386, 2020.
Article in Chinese | WPRIM | ID: wpr-950285

ABSTRACT

Objective: To investigate the effects of Gymnema montanum leaf extract against endoplasmic reticulum (ER) stress-induced toxicity in endothelial cells. Methods: The immortalized endothelial hybrid cell, EA.hy926 was treated with different concentrations of Gymnema montanum leaf extract (0-100 μg/mL) and the ER stress inducer, tunicamycin. The cytotoxicity was assessed by MTT as well as lactate dehydrogenase and malondialdehyde levels were determined. The levels of ER stress markers, GRP78 and CHOP were analysed by Western blot assay. The Gymnema montanum leaf extract-mediated activation of nuclear factor erythroid 2-related factor 2 (Nrf2) was assessed by cell-based luciferase enzyme fragment complementation assay and antioxidant responsive element driven luciferase reporter assay. The levels of phosphoproteins of the MAPK pathway were analyzed using the Bioplex system. Results: A dose-dependent cytoprotective effect of Gymnema montanum leaf extract was observed in tunicamycin-induced toxicity. Gymnema montanum leaf extract significantly reduced lactate dehydrogenase activity and malondialdehyde levels in ER stress-induced endothelial cells. It also suppressed ER stress markers dose dependently and inhibited the phosphorylation of JNK, ERK, MEK and p38 MAPK in tunicamycin-induced endothelial cells. Moreover, Gymnema montanum leaf extract increased the expression of Nrf2 and its downstream targets in endothelial cells. Conclusions: Gymnema montanum leaf extract attenuates ER stress by increasing the expression of Nrf2 and its downstream genes.

9.
Chinese Journal of Applied Physiology ; (6): 255-260, 2020.
Article in Chinese | WPRIM | ID: wpr-827807

ABSTRACT

To investigate the effect and mechanism of psoralen on calvarial osteoblasts injuries caused by tricalcium phosphate (TCP) wear particles in vitro. Primary osteoblasts were obtained from the calvaria of neonatal SD rat by the series of digestion and were identified with ALP staining. Calvarial osteoblasts were treated with TCP wear particles for 48 h to establish the in vitro model of osteoblasts injuries. The rat osteoblasts were randomly divided into control group, TCP wear particles (0.1 mg/ml) group, psoralen treated (at the concentrations of 10, 10, 10 mol/L) groups. WST assay and the flow cytometry were used to detect the cell viability of osteoblasts and apoptosis, respectively. Chemical colorimetry was performed to examine ALP activity of osteobalsts. When the osteoblasts were treated for 14 day, mineral nodules formation was observed with alizarin red S staining. Western blot was applied to examine protein expressions of glucose regulated protein78/94(GRP78/94), inositol dependent enzyme 1 alpha (IREα), spliced X-box binding protein 1 (XBP1s) and phosphorylated c-Jun N-terminal kinase (p-JNK) in calvarial osteoblasts. Compared with control group, the cell viability of osteoblasts, ALP activity and mineral nodules formation in TCP group were decreased significantly (P<0.05), while the percentage of apoptosis and protein expressions of GRP78/94, IRE1α, XBP1 and p-JNK were obviously increased in calvarial osteoblasts (P<0.05). Compared with TCP group, the injuries of calvarial osteoblasts and cell apoptosis in psoralen treated groups were obviously decreased (P<0.05), and the expression levels of GRP78/94, IRE1α, XBP1 and p-JNK were down-regulated remarkably (P<0.05). Psoralen prevents osteoblasts injuries caused by TCP wear particles through IRE1α-XBP1s-JNK signaling pathway activation.

10.
Environmental Health and Preventive Medicine ; : 53-53, 2020.
Article in English | WPRIM | ID: wpr-827262

ABSTRACT

BACKGROUND@#Pilea umbrosa (Urticaceae) is used by local communities (district Abbotabad) for liver disorders, as anticancer, in rheumatism and in skin disorders.@*METHODS@#Methanol extract of P. umbrosa (PUM) was investigated for the presence of polyphenolic constituents by HPLC-DAD analysis. PUM (150 mg/kg and 300 mg/kg) was administered on alternate days for eight weeks in rats exposed with carbon tetrachloride (CCl). Serum analysis was performed for liver function tests while in liver tissues level of antioxidant enzymes and biochemical markers were also studied. In addition, semi quantitative estimation of antioxidant genes, endoplasmic reticulum (ER) induced stress markers, pro-inflammatory cytokines and fibrosis related genes were carried out on liver tissues by RT-PCR analysis. Liver tissues were also studied for histopathological injuries.@*RESULTS@#Level of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and glutathione (GSH) decreased (p < 0.05) whereas level of thiobarbituric acid reactive substance (TBARS), HO and nitrite increased in liver tissues of CCl treated rat. Likewise increase in the level of serum markers; alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and total bilirubin was observed. Moreover, CCl caused many fold increase in expression of ER stress markers; glucose regulated protein (GRP-78), x-box binding protein1-total (XBP-1 t), x-box binding protein1-unspliced (XBP-1 u) and x-box binding protein1-spliced (XBP-1 s). The level of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) was aggregated whereas suppressed the level of antioxidant enzymes; γ-glutamylcysteine ligase (GCLC), protein disulfide isomerase (PDI) and nuclear erythroid 2 p45-related factor 2 (Nrf-2). Additionally, level of fibrosis markers; transforming growth factor-β (TGF-β), Smad-3 and collagen type 1 (Col1-α) increased with CCl induced liver toxicity. Histopathological scrutiny depicted damaged liver cells, neutrophils infiltration and dilated sinusoids in CCl intoxicated rats. PUM was enriched with rutin, catechin, caffeic acid and apigenin as evidenced by HPLC analysis. Simultaneous administration of PUM and CCl in rats retrieved the normal expression of these markers and prevented hepatic injuries.@*CONCLUSION@#Collectively these results suggest that PUM constituted of strong antioxidant chemicals and could be a potential therapeutic agent for stress related liver disorders.


Subject(s)
Animals , Male , Rats , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury , Drug Therapy , Pathology , Endoplasmic Reticulum Stress , Fibrosis , Drug Therapy , Genetics , Inflammation , Drug Therapy , Genetics , Liver , Metabolism , Protective Agents , Pharmacology , Rats, Sprague-Dawley , Urticaceae , Chemistry
11.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 472-480, 2020.
Article in English | WPRIM | ID: wpr-827223

ABSTRACT

Sangguayin preparation (SGY-P) is refined from the traditional Chinese medicinal compound Sangguayin, which "clears heat and promotes fluid" and "tonifies kidney and spleen" for "Xiaoke", commonly known as 'Diabetes mellitus' in clinics. Previous studies have shown that SGY-P could reduce insulin resistance and repair damaged pancreas in db/db mice, but the underlying mechanisms were unclear. Here, we investigated whether treatment with SGY-P could protect pancreatic β-cells from apoptosis and uncovered the underlying mechanisms. db/db mice were used to observe the hypoglycemic and islet protective effect in vivo. Apoptosis was induced in mouse insulinoma 6 (MIN6) cells by palmitate, following which the cells were treated with SGY-P for elucidating the anti-apoptotic mechanism in vitro. Cell viability and nuclear morphology were detected by CCK-8 assay and Hoechst 33258 staining. The expression levels of apoptosis-, endoplasmic reticulum (ER) stress-, and autophagy-related proteins were measured by western blot. The results showed that SGY-P reduced fasting blood glucose, pancreatic pathological changes, and islet β-cell apoptosis in db/db mice. Palmitate-induced apoptosis in MIN6 cells was decreased by SGY-P treatment. Hence, SGY-P therapy exhibited a protective effect on pancreatic β-cells by decreasing the expression of cleaved caspase-3, cleaved PARP and Bax, and increasing Bcl-2 by suppressing ER stress (Bip/XBP1/IRE1α/CHOP/Caspase-12) and autophagy (LC3/p62/Atg5) pathways.2/Atg5) pathways.

12.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 827-836, 2020.
Article in English | WPRIM | ID: wpr-881025

ABSTRACT

Jin-tang-ning (JTN), a Chinese patent medicine, mainly comprised of Bombyx moriL., has been proved to show α-glucosidase inhibitory efficacy and clinically effective for the treatment of type 2 diabetes (T2DM). Recently, we have reported that JTN could ameliorate postprandial hyperglycemia and improved β cell function in monosodium glutamate (MSG)-induced obese mice, suggesting that JTN might play a potential role in preventing the conversion of impaired glucose tolerance (IGT) to T2DM. In this study, we evaluated the effect of JTN on the progression of T2DM in the pre-diabetic KKAy mice. During the 10 weeks of treatment, blood biochemical analysis and oral glucose tolerance tests were performed to evaluate glucose and lipid profiles. The β cell function was quantified using hyperglycemic clamp at the end of the study. JTN-treated groups exhibited slowly raised fasting and postprandial blood glucose levels, and also ameliorated lipid profile. JTN improved glucose intolerance after 8 weeks of treatment. Meanwhile, JTN restored glucose-stimulated first-phase of insulin secretion and induced higher maximum insulin levels in the hyperglycemic clamp. Thus, to investigate the underlying mechanisms of JTN in protecting β cell function, the morphologic changes of the pancreatic islets were observed by optical microscope and immunofluorescence of hormones (insulin and glucagon). Pancreatic protein expression levels of key factors involving in insulin secretion-related pathway and ER stress were also detected by Western blot. Pre-diabetic KKAy mice exhibited a compensatory augment in β cell mass and abnormal α cell distribution. Long-term treatment of JTN recovered islet morphology accompanied by reducing α cell area in KKAy mice. JTN upregulated expression levels of glucokinase (GCK), pyruvate carboxylase (PCB) and pancreas duodenum homeobox-1 (PDX-1), while down-regulating C/EBP homologous protein (Chop) expression in pancreas of the hyperglycemic clamp, which indicated the improvement of mitochondrial metabolism and relief of endoplasmic reticulum (ER) stress of β cells after JTN treatment. These results will provide a new insight into exploring a novel strategy of JTN for protecting β cell function and preventing the onset of pre-diabetes to T2DM.

13.
Asian Pacific Journal of Tropical Biomedicine ; (12): 379-386, 2020.
Article in Chinese | WPRIM | ID: wpr-823953

ABSTRACT

Objective: To investigate the effects of Gymnema montanum leaf extract against endoplasmic reticulum (ER) stress-induced toxicity in endothelial cells.Methods: The immortalized endothelial hybrid cell, EA.hy926 was treated with different concentrations of Gymnema montanum leaf extract (0-100 μg/mL) and the ER stress inducer, tunicamycin. The cytotoxicity was assessed by MTT as well as lactate dehydrogenase and malondialdehyde levels were determined. The levels of ER stress markers, GRP78 and CHOP were analysed by Western blot assay. The Gymnema montanum leaf extract-mediated activation of nuclear factor erythroid 2-related factor 2 (Nrf2) was assessed by cell-based luciferase enzyme fragment complementation assay and antioxidant responsive element driven luciferase reporter assay. The levels of phosphoproteins of the MAPK pathway were analyzed using the Bioplex system. Results: A dose-dependent cytoprotective effect of Gymnema montanum leaf extract was observed in tunicamycin-induced toxicity. Gymnema montanum leaf extract significantly reduced lactate dehydrogenase activity and malondialdehyde levels in ER stress-induced endothelial cells. It also suppressed ER stress markers dose dependently and inhibited the phosphorylation of JNK, ERK, MEK and p38 MAPK in tunicamycin-induced endothelial cells. Moreover, Gymnema montanum leaf extract increased the expression of Nrf2 and its downstream targets in endothelial cells. Conclusions: Gymnema montanum leaf extract attenuates ER stress by increasing the expression of Nrf2 and its downstream genes.

14.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 364-371, 2019.
Article in Chinese | WPRIM | ID: wpr-817789

ABSTRACT

@#【Objective】To investigate the role of ER stress and PUMA in 5-FU-induced liver cells injury and apoptosis.【Methods】We established 5-FU-induced liver injury models by intraperitoneally injecting the isodose 5-FU to 10 PUMA knockout mice(PUMA-KO)and 20 PUMA Wild type mice(PUMA-WT). Meanwhile,10 WT mice were intraperitoneally injected with 4-Phenylbutyric acid,the ER stress inhibitor. In the control group,10 KO mice and 20 WT mice were given the same amount of normal saline.After the modeling,serum and liver tissues of the mice were collected to assess the degree of liver pathological injury,measure the expression levels of ALT and AST in serum,and detect the expression levels of PUMA and GRP78 in liver tissues. The changes of these indicators in different treatment groups were observed and compared.【Results】Compared with the WT control group,serum ALT and AST levels were significantly increased in the 5-FU group,H&E staining showed punctate focal necrosis,accompanied by hemorrhage and inflammation. TUNEL staining showed apoptotic cells were markedly added(Z = 3.78,P < 0.001),and expressions of PUMA and GRP78 were obviously augmented,suggesting that both PUMA and ER stress were involved in 5-FU-induced liver cells injury and apoptosis. Then,in the 4-PBA group,we found that the expression levels of GRP78 and PUMA were down-regulated,and apoptosis of liver cells was reduced under the same dose of 5-FU(χ~2= 32.99,Z = 3.78,P <0.001),further confirming that both PUMA and ER stress were involved in this process. Subsequently,it was found that,when induced by the same dose of 5-FU,cleaved caspase-3 staining showed that the liver apoptosis signal of the PUMA knockout mice was lower than the WT mice(χ~2= 33.99,Z = 3.78,P < 0.001),but the difference in the expression of GRP78 between the two groups was not statistically significant. In summary,the expression of PUMA was reduced and the apoptosis of liver cells was attenuated after the inhibition of ER stress;PUMA knockdown could not influence the activation of ER stress but alleviated apoptosis of liver cells.【Conclusions】PUMA mediates ER stress-up-regulated liver cells apoptosis in 5-FU-induced Chemotherapeutic liver injury.

15.
Neuroscience Bulletin ; (6): 889-900, 2019.
Article in English | WPRIM | ID: wpr-776449

ABSTRACT

GGGGCC repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). It has been reported that hexanucleotide repeat expansions in C9ORF72 produce five dipeptide repeat (DPR) proteins by an unconventional repeat-associated non-ATG (RAN) translation. Within the five DPR proteins, poly-PR and poly-GR that contain arginine are more toxic than the other DPRs (poly-GA, poly-GP, and poly-PA). Here, we demonstrated that poly-PR peptides transferred into cells by endocytosis in a clathrin-dependent manner, leading to endoplasmic reticulum stress and cell death. In SH-SY5Y cells and primary cortical neurons, poly-PR activated JUN amino-terminal kinase (JNK) and increased the levels of p53 and Bax. The uptake of poly-PR peptides by cells was significantly inhibited by knockdown of clathrin or by chlorpromazine, an inhibitor that blocks clathrin-mediated endocytosis. Inhibition of clathrin-dependent endocytosis by chlorpromazine significantly blocked the transfer of poly-PR peptides into cells, and attenuated poly-PR-induced JNK activation and cell death. Our data revealed that the uptake of poly-PR undergoes clathrin-dependent endocytosis and blockade of this process prevents the toxic effects of synthetic poly-PR peptides.

16.
Nutrition Research and Practice ; : 95-104, 2019.
Article in English | WPRIM | ID: wpr-741710

ABSTRACT

BACKGROUND/OBJECTIVES: Inflammatory Bowel Disease (IBD) has rapidly escalated in Asia (including Korea) due to increasing westernized diet patterns subsequent to industrialization. Factors associated with endoplasmic reticulum (ER) stress are demonstrated to be one of the major causes of IBD. This study was conducted to investigate the effect of Lycium barbarum (L. barbarum) on ER stress. MATERIALS/METHODS: Mouse embryonic fibroblast (MEF) cell line and polarized Caco-2 human intestinal epithelial cells were treated with crude extract of the L. chinense fruit (LF). Paracellular permeability was measured to examine the effect of tight junction (TJ) integrity. The regulatory pathways of ER stress were evaluated in MEF knockout (KO) cell lines by qPCR for interleukin (IL) 6, IL8 and XBP1 spliced form (XBP1s). Immunoglobulin binding protein (BiP), XBP1s and CCAAT/enhancer-binding homologous protein (CHOP) expressions were measured by RT-PCR. Scanning Ion Conductance Microscopy (SICM) at high resolution was applied to observe morphological changes after treatments. RESULTS: Exposure to LF extract strengthened the TJ, both in the presence and absence of inflammation. In polarized Caco-2 pretreated with LF, induction in the expression of proinflammatory marker IL8 was not significant, whereas ER stress marker XBP1s expression was significantly increased. In wild type (wt) MEF cells, IL6, CHOP and XBP1 spliced form were dose-dependently induced when exposed to 12.5–50 µg/mL extract. However, absence of XBP1 or IRE1α in MEF cells abolished this effect. CONCLUSION: Results of this study show that LF treatment enhances the barrier function and reduces inflammation and ER stress in an IRE1α-XBP1-dependent manner. These results suggest the preventive effect of LF on healthy intestine, and the possibility of reducing the degree of inflammatory symptoms in IBD patients.


Subject(s)
Animals , Humans , Mice , Asia , Carrier Proteins , Cell Line , Diet , Endoplasmic Reticulum , Epithelial Cells , Fibroblasts , Fruit , Immunoglobulins , Inflammation , Inflammatory Bowel Diseases , Interleukin-6 , Interleukin-8 , Interleukins , Intestines , Lycium , Microscopy , Permeability , Tight Junctions
17.
Laboratory Animal Research ; : 288-294, 2018.
Article in English | WPRIM | ID: wpr-718838

ABSTRACT

A few clues about correlation between endoplasmic reticulum (ER) stress and mulberry (Morus alba) leaves were investigated in only the experimental autoimmune myocarditis and streptozotocin-induced diabetes. To investigate whether a novel extract of mulberry leaves fermented with Cordyceps militaris (EMfC) could suppress ER in fatty liver, alterations in the key parameters for ER stress response were measured in high fat diet (HFD)-induced obese C57L/6 mice treated with EMfC for 12 weeks. The area of adipocytes in the liver section were significantly decreased in the HFD+EMfC treated group as compared to the HFD+Vehicle treated group, while their level was higher in HFD+Vehicle treated group than No treated group. The level of the eukaryotic initiation factor 2 alpha (eIF2α) and inositol-requiring enzyme 1 beta (IRE1α) phosphorylation and CCAAT-enhancer-binding protein homologous protein (CHOP) expression were remarkably enhanced in the HFD+Vehicle treated group. However, their levels were restored in the HFD+EMfC treated group, although some differences were detected in the decrease rate. Similar recovery was observed on the ER stress-induced apoptosis. The level of Caspase-3, Bcl-2 and Bax were decreased in the HFD+EMfC and HFD+orlistat (OT) treated group compared to the HFD+Vehicle treated group. The results of the present study therefore provide first evidence that EMfC with the anti-obesity effects can be suppressed ER stress and ER stress-induced apoptosis in the hepatic steatosis of HFD-induced obesity model.


Subject(s)
Animals , Mice , Adipocytes , Apoptosis , Caspase 3 , CCAAT-Enhancer-Binding Proteins , Cordyceps , Diet, High-Fat , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Eukaryotic Initiation Factor-2 , Fatty Liver , Liver , Morus , Myocarditis , Obesity , Phosphorylation
18.
The Korean Journal of Physiology and Pharmacology ; : 567-575, 2018.
Article in English | WPRIM | ID: wpr-727867

ABSTRACT

Acute kidney injury (AKI), which is defined as a rapid decline of renal function, becomes common and recently recognized to be closely intertwined with chronic kidney diseases. Current treatment for AKI is largely supportive, and endoplasmic reticulum (ER) stress has emerged as a novel mediator of AKI. Since carbon monoxide attenuates ER stress, the objective of the present study aimed to determine the protective effect of carbon monoxide releasing molecule-2 (CORM2) on AKI associated with ER stress. Kidney injury was induced after LPS (15 mg/kg) treatment at 12 to 24 h in C57BL/6J mice. Pretreatment of CORM2 (30 mg/kg) effectively prevented LPS-induced oxidative stress and inflammation during AKI in mice. CORM2 treatment also effectively inhibited LPS-induced ER stress in AKI mice. In order to confirm effect of CO on the pathophysiological role of tubular epithelial cells in AKI, we used mProx24 cells. Pretreatment of CORM2 attenuated LPS-induced ER stress, oxidative stress, and inflammation in mProx24 cells. These data suggest that CO therapy may prevent ER stress-mediated AKI.


Subject(s)
Animals , Mice , Acute Kidney Injury , Carbon Monoxide , Carbon , Endoplasmic Reticulum , Epithelial Cells , Inflammation , Kidney , Oxidative Stress , Renal Insufficiency, Chronic
19.
Chinese Journal of Pharmacology and Toxicology ; (6): 283-283, 2018.
Article in Chinese | WPRIM | ID: wpr-705300

ABSTRACT

OBJECTIVE To explore the potential effect and mechanisms of protopanaxadiol deriva-tive 1-(3,4-dimethoxyphenethyl)-3-(3-dehydroxyl-20(s)-protopa- naxadiol-3b-yl)-urea (DDPU) in the treatment of Alzheimer disease.METHODS ELISA assay was performed in both HEK293-APPswe and CHO-APP cells to demonstrate the efficacy of DDPU in reducing Ab level.SH-SY5Y,primary neurons and astrocyte cellswereused to study the regulation of DDPU against the signaling pathways involved in Aβ/ER-stress pathology. APP/PS1 transgenic mice wereusedto study the regulation of DDPU against ADL and cognitive deficits. APP/PS1 transgenic mice were randomly placed into three groups (n=10):The two 6-month transgenic groups were administrated with 30 mg·kg-1DDPU or vehicle and the 6-month non-transgenic group was administrated with vehicle for 100 days by intraperitonealinjec-tion.After 100-day administration,nest construction assay and Morris water maze(MWM)assay were applied to evaluate the daily living activities and cognitive abilities of the mice with continuous DDPU treatment. Upon completion of behavior assays, mice were euthanized, and the brains were removed and bisected in mid-sagittal plane.The right hemispheres were frozen and stored at-80°C,and the left hemispheres were fixed in 4% paraformaldehyde. RESULTS DDPU effectively improved learning and memory impairments in APP/PS1 transgenic mice, and the underlying mechanisms have been inten-sively investigated. DDPU reduced Ab production by inhibiting the PERK/eIF2a signaling-mediated BACE1 translation, while promoted Ab clearance as a PI3K inhibitor thus negatively regulating PI3K/AKT/mTOR signaling in promotion of autophagy.Moreover,DDPU also exhibited neuroprotective effect by attenuating ER stress. Therefore, all findings have clearly demonstrated the crosstalk between Ab and ER stress, and confirmed that targeting ER stress should be a potential target for innovative anti-AD drug development,while highlighted the potential of DDPU in the treatment of AD.

20.
Biomolecules & Therapeutics ; : 225-241, 2018.
Article in English | WPRIM | ID: wpr-714743

ABSTRACT

Taurine is an abundant, β-amino acid with diverse cytoprotective activity. In some species, taurine is an essential nutrient but in man it is considered a semi-essential nutrient, although cells lacking taurine show major pathology. These findings have spurred interest in the potential use of taurine as a therapeutic agent. The discovery that taurine is an effective therapy against congestive heart failure led to the study of taurine as a therapeutic agent against other disease conditions. Today, taurine has been approved for the treatment of congestive heart failure in Japan and shows promise in the treatment of several other diseases. The present review summarizes studies supporting a role of taurine in the treatment of diseases of muscle, the central nervous system, and the cardiovascular system. In addition, taurine is extremely effective in the treatment of the mitochondrial disease, mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), and offers a new approach for the treatment of metabolic diseases, such as diabetes, and inflammatory diseases, such as arthritis. The review also addresses the functions of taurine (regulation of antioxidation, energy metabolism, gene expression, ER stress, neuromodulation, quality control and calcium homeostasis) underlying these therapeutic actions.


Subject(s)
Acidosis, Lactic , Arthritis , Brain Diseases , Calcium , Cardiovascular System , Central Nervous System , Cytoprotection , Energy Metabolism , Gene Expression , Heart Failure , Japan , MELAS Syndrome , Metabolic Diseases , Mitochondrial Diseases , Neurodegenerative Diseases , Pathology , Quality Control , Taurine
SELECTION OF CITATIONS
SEARCH DETAIL